<section-header>

2023.12.23. (Sat.) LIANG Yaohan (梁 耀涵)

Contents

1. Introduction

- 1-1) The discovery of benzene
- 1-2) Aromaticity and Hückel's rule
- 1-3) Dearomative strategies in total synthesis

2. Symmetric Dearomatization Reactions

- 2-1) Birch reduction
- 2-2) Buchner ring-expansion
- 2-3) Hypervalent lodine-promoted intramolecular reaction

3. Dearomatization strategy in Biochemistry

4. Catalytic Asymmetric Dearomatization (CADA) Reactions

- 3-1) Alkylative Dearomatization Reactions
- 3-2) Oxidative Dearomatization Reactions
- 3-3) Transition-Metal-Catalyzed Dearomatization Reactions
- 3-4) Asymmetric Dearomative Halogenation
- 3-5) Brønsted acid-catalyzed Asymmetric Dearomatization

5. Asymmetric Synthesis of Spiroisoxazolines

6. Proposal

1. Introduction

1-1. The discovery of benzene

portable gas lamp

Michael Faraday (1791-1867)

gas-chromatographic analysis (-o-o-).

Fig. 4. Chromatogram 1: Capillary chromatogram of the pyrolysis condensate having b.p. 20-120 °C, temperature-programmed and partly pressure-programmed, shown with modified chart drive. Steel thin film capillary, $p_i=2.2$ atm N₂.

1-2. Aromaticity

Characteristics: 1.Bond length **averaging** 2.Large **delocalization** energy 3.Structural **stability**

Chromatogram 3: Capillary chromatogram of the "hydrocarbon C_2H_3 ", which was found to be the mother liquor of the crystallizing benzene.

"Bicarburet of Hydrogen"

Friedrich August Kekulé (1829-1896)

Erich Hückel (1896-1980)

Hückel's rule:

- 1. A delocalized **conjugated** π system, most commonly an arrangement of alternating single and double bonds
- 2. Coplanar structure, with all the contributing atoms in the same plane
- 3. Contributing atoms arranged in one or more **rings**
- 4. A number of π delocalized electrons that is even,

but not a multiple of 4. That is, $(4n + 2) \pi$ -electrons, where n = 0, 1, 2, 3, and so on.

Reference

1. Introduction

1-3. Dearomative strategies in total synthesis

Reference

Roche, S-P.; Jr Porco, J-A*. *Angew, Chem. Int. Ed.* **2011**, *50*, 4068-4093. Franklin, J-L*. *J. Am. Chem. Soc.* **1950**, *72*, 4378-4280.

2. Symmetric Dearomatization Reactions 2-1. Birch reduction

2-1-1. Birch reduction Mechanism

Step 1: Reduction of Benzene to the benzene "radical anion"

"solvated electron"

Benzene "radical anion" \cdot Seven π electrons

 \cdot Only one resonance form shown

Step 2: Protonation of the benezene "radical anion"

pentadienyl radical (only one resonance form shown)

Step 3: Reduction of the radical to an anion by the electron

Step 4: Protonation of the anion by alcohol

Pentadienyl anion

Alcohol is absolutely required for this step (NH₃ is not acidic enough!)

2-1-2. Substituent Effects in the Birch reduction

Since "nucleophlie" here is free electrons (e⁻), the reaction is **faster** on aromatic rings with **EWG**, and **slower** on aromatic rings with **EDG**

When a substituent is present, the formation of the first C–H bond determines which product will form. This, in turn, depends on the site where the most stable anion will form.

Reference

Arthur Birch (1915-1995)

2. Symmetric Dearomatization Reactions

2-1-3. The application of Birch reduction

Organocatalyzed Birch Reduction Driven by Visible Light

a Plausible Mechanism for Consecutive Photoinduced Electron Transfer

2-2. Buchner ring-expansion

Eduard Buchner (1860-1917) The Nobel Prize in Chemistry 1907 "For his biochemical researches and his discovery of cell-free fermentation"

Reference

Buchner, E.; Curtius, T.; *Berichte der deutschen chemischen Gesellschaft.* **1885**, *18*, 2371-2377. Buchner, E.; Curtius, T.; *Berichte der deutschen chemischen Gesellschaft.* **1885**, *18*, 2377-2379.

2. Symmetric Dearomatization Reactions

Reference

Ramachandran, K. et al. *Helv. Chim. Acta.* **1987**, *70*, 1429-1438. Suero, M. G. et al. *J. Am. Chem. Soc.* **2019**, *39*, 15509-15514.

2. Symmetric Dearomatization Reactions

2-3. Hypervalent lodine-promoted intramolecular reaction

2-3-1. Hypervalent iodine(III)-mediated oxidative dearomatization of 2*H*-indazoles towards indazolyl indazolones

2-3-2. Synthesis of fluorinated polycyclic dehydroaltenusin analogs through hypervalent iodine-catalyzed dearomatization

Reference

Bhattacharjee, S.; Laru, S.; Hajra, A. *Org. Biomol. Chem.*, **2022**, *20*, 8893-8897. Xiong, Y. et al. *Org. Biomol. Chem.*, **2022**, *20*, 8104-8107.

3. Dearomatization strategy in Biochemistry

3-1. Enzyme-catalyzed transformations

Biocatalytic site- and enantioselective oxidative dearomatization of phenols

Reference

Dockrey, S.; Lukowski, A.; Becker, M.; Naratan, A*. *Nat. Chem.* **2018**, *10*, 119-125. Narayan, A.* et al. *ACS, Catal.* **2019**, *9*, 3633-3640.

4-1. Alkylative Dearomatization Reactions

4-1-1. Stereoselective synthesis of cyclohexa-2,4-dien-1-ones and cyclohex-2-en-1-ones from phenols

4-1-2. Enantioselective Alkylation Dearomatization–Annulation in Total Synthesis

Reference

Fráter, G. et al. *Tetrahedron: Asymmetry.* **2006**, *17*, 1693-1699. Porco, J. et al. *J. Am. Chem. Soc.* **2010**, *132*, 13642-13644.

4-1. Alkylative Dearomatization Reactions

4-1-2. Enantioselective Alkylation Dearomatization–Annulation in Total Synthesis

Figure 2. Proposed Binding Model of Catalyst 121 and 15. (a) Key interactions of 121 and 15. (b) 1.4 Å Connolly surface.

Reference

Porco, J. et al. *J. Am. Chem. Soc.* **2007**, *129*, 12682-12683. Porco, J. et al. *J. Am. Chem. Soc.* **2010**, *132*, 14212-14215.

4-2. Oxidative Dearomatization Reactions

4-2-1. Enantioselective Intramolecular Dearomative Lactonization of Naphthols Catalyzed by Planar Chiral Iodoarene

4-2. Oxidative Dearomatization Reactions

4-2-2. Carbohydrate based chiral iodoarene catalysts for enantioselective dearomative spirocyclization

4-2. Oxidative Dearomatization Reactions

4-2-4. Asymmetric Dearomatizing Spirolactonization of Naphthols Catalyzed by Spirobiindane-Based Chiral Hypervalent Iodine Species

Referencew

Kita, Y*. et al. J.Am. Chem. Soc. 2013, 135, 4558-4566.

Zheng, H-L.; Sang, Y-Q.; Houk, K*.; Xue, X-S*.; Cheng, J-P*. J. Am. Chem. Soc. 2019, 141, 16046-16056.

4-3 Transition-Metal-Catalyzed Dearomatization Reactions

4-3-1. Enantioselective Construction of Spiroindolenines by Ir-Catalyzed Allylic Alkylation Reactions

Iridium-Catalyzed Allylic Alkylation Reaction with N-Aryl Phosphoramidite Ligands

Reference

You, S-L.; Wu, Q-F.; He, H.; Liu, W-B. *J. Am. Chem. Soc.* **2010**, *132*, 11418-11419. You, S-L. et al. *J. Am. Chem. Soc.* **2012**, *134*, 4812-4821.

4-3 Transition-Metal-Catalyzed Dearomatization Reactions

4-3-2. Catalytic Asymmetric Dearomatization by Visible-Light-Activated [2+2] Photocycloaddition

Reference

Meggers, E. et al. *Angew. Chem. Int. Ed.* **2018**, *57*, 6242-6246. Meggers, E. et al. *Dalton Trans.* **2016**, *45*, 8320-8323.

4-4 Asymmetric Dearomative Halogenation

Asymmetric Dearomative Fluorination of 2-Naphthols with a Dicarboxylate Phase-Transfer Catalyst

Reference

Hamashima, Y. et al. *Angew. Chem. Int. Ed.* **2020**, *59*, 14101-14105. Müller, K.; Faeh, C.; Diederich, F. *Science*, **2007**, *317*, 1881-1886.

4-5 Brønsted acid-catalyzed Asymmetric Dearomatization

4-5-1. Catalytic Asymmetric Dearomatizing Redox Cross Coupling of Ketones with Aryl Hydrazines Giving 1,4-Diketones

Reference

Huang, S.; Kötzner L.; De, C-K.; List, B. *J. Am. Chem. Soc.* **2015**, 137, 3446-3449. Ye, L-W. *Chinese Chemical Letters.* **2023**. *34*, 107647.

5. Asymmetric Synthesis of Spiroisoxazolines

Reference

Das, P.; Valente, E-J.; Hamme II, A-T*. *Eur. J. Org. Chem.* **2014**, *13*, 2659-2663. Murakata, M.; Tamura, M.; Hoshino, O*. *J. Org. Chem.* **1997**, *62*, 4428-4433.

5. Asymmetric Synthesis of Spiroisoxazolines

5-2. Synthesis of Spiroisoxazoline via 1,3-Dipolar Cycloaddition

Asymmetric Synthesis of Spiro[isoxazolin-3,3'-oxindoles] via the Catalytic 1,3-Dipolar Cycloaddition Reaction of Nitrile Oxides

Reference

Nishiyama, S.; Yamamura, S*. *Bull. Chem. Soc. Jpn.* **1985**, *58*, 3453-3456. Lian, X-J.; Guo, S-S.; Wang, G.; Lin, L-L.; Liu, X-H.; Feng, X-M*. *J. Org. Chem.* **2014**, *79*, 7703-7710.