Organocatalytic Electrochemical Reaction

2023/10/14 (Sat) Shunsuke Minabe

Contents

1. Introduction

- 1-1) Electroorganic Chemistry
- 1-2) Development of Electrochemistry
- 1-3) The choice of Components
- 1-4) Various Method
- 1-5) Cyclic Voltammetry (CV)
- 1-6) Asymmetric Electrochemical Reactions

2. Mediators

- 2-1) Achiral/Chiral Mediators
- 2-2) Chiral Azabicyclo-N-oxyls Mediated Catalysis
- 2-3) Organoiodine(III) Catalysis

3. Chiral Organocatalysts

- 3-1) Chiral Enamine Catalysis
- 3-2) Chiral NHC Catalysis
- 3-3) Chiral Brønsted Ácid Catalysis
- 3-4) Chiral Phosphate Anion Phase-Transfer Catalysis

4. Proposal

1. Introduction

1-1. Electroorganic Chemistry

Instead of chemical oxidant/reductant

change the potential easly

limitation of reaction condition

safe, cheap, high energy efficiency

Electrochemistry

solvent, electrolyte (電解質), electrode (電極)

Electron transfer between electrode and compound one electron transfer

Chemical Oxidant or Reductant *harsh, toxic, expensive, explosiveness, waste* $KMnO_4$, CrO_3 , OsO_4 , other transition metal, etc. H_2O_2 , Oxone, *m*-CPBA, Selectfluor, etc.

1.2. Development of Electrochemistry

Refference

Baran, P. S. et al. Acc. Chem. Rev. **2017**, *117*, 13230. Baran, P. S. et al. Acc. Chem. Res. **2020**, *53*, 72.

1. Introduction

1-3. The Choice of Components

1-4. Various Method

Refference Baran, P. S. et al. Acc. Chem. Rev. 2017, *117*, 13230.

Baran, P. S. et al. Acc. Chem. Res. 2020, 53, 72.

1. Introduction

1-5. Cyclic Voltammetry (CV)

CV is a powerful and popular electrochemical technique commonly employed to investigate the reduction and oxidation processes of molecular species.

1-6. Asymmetric Electrochemical Reactions

Refference

Berlinguette, C. P. et al. Susteinable Energy Fuels **2018**, *2*, 1905. Dempsey, J. L. et al. *J. Chem. Educ.* **2018**, *95*, 197.

2-Mediators

2-1. Achiral/Chiral Mediators^a

Refference

a) Baran, P. S. et al. Acc. Chem. Rev. 2017, 117, 13230.

b) Onomura, O. et al. Tetrahedron Letters 2008, 49, 5247.

2. Mediators

Refference

a) Powers, D. C. et al. *J. Am. Chem. Soc.* **2020**, *142*, 4990.

b) Powers, D. C. et al. J. Am. Chem. Soc. 2022, 144, 13913.

2. Mediators

2-3-3. One Electron Redox Cycle (π-Extended Iodoarene)^a

2-3-4. Chiral Two Electron Redox Cycle^b

2a $R^1 = OMe$, $R^2 = H$: 54% yield, 67% ee **2b** $R^1 = OMe$, $R^2 = CO_2Me$: 70% yield, 71% ee **2c** $R^1 = O^tBu$, $R^2 = H$: 15% yield, 68% ee **2d** $R^1 = OBn$, $R^2 = H$: decomposed **2e** $R^1 = NHPh$, $R^2 = H$: decomposed

Cyclic voltammograms using n-Bu4NBF4 (0.1 M) as electrolyte in TFE at 20 mV s-1, under N2. Working electrode: glass carbon; refe ence electrode: Ag/AgCl in 3 M NaCl; auxiliary electrode: Pt wire.

Refference

- a) Atobe, N.; Shida, N. et al. DOI:10.26434/chemrxiv-2022-sggqd
- b) Wirth, T. et al. Synthesis 2019, 51, 276.

3-1. Chiral Enamine Catalysis

Refference

a) Jang, H.-Y. et. al. *Eur. J. Org. Chem.* **2009**, 5309. *b)* Jørgensen, K. A. et. al. *Angew. Chem. Int. Ed.* **2010**, *49*, 129.

Refference

a) Mei, T.-S. et. al. *J. Am. Chem. Soc.* **2021**, *143*, 15599. b) Luo, S. et. al. *Angew. Chem. Int. Ed.* **2020**, *59*, 14347. c) Rees, C. W. et al. *J. Chem. Soc.* **1969**, 742.

Refference

a) Zhu, T. et. al. *Angew. Chem. Int. Ed.* **2019**, *58*, 17625. *b)* Zhu, T. et. al. *Nat. Commun.* **2022**, *13*, 3827.

Refference

a) Guo, C. et. al. Angew. Chem. Int. Ed. 2020, 59, 18500.

Refference a) Sun. J. et. al. *Nat. Commun.* **2023**, *14*, 357.

4. Proposal

Reference

- a) Liu, X.-Y.; Tan, B. et al. J. Am. Chem. Soc. 2015, 137, 15062.
- b) Sun, H.; Xu, Q.-L. et al. J. Am. Chem. Soc. 2016, 138, 5202.
- c) Xiang, S.-H.; Tan. B. et al. Angew. Chem. Int. Ed. 2020, 59, 11374.
- d) Zhong, F.; Zhai, H. et al. Org. Chem. Front. 2022, 9, 5395.