K. ISHIHARA Laboratory

M2 Seminar 2021.10.02

Activation Methods of Electrophilic Halogenating Agents

Sachiko KUMAGAI

1. Typical Activation Models of Electrophilic Halogenating Agents

a. Typical electrophilic halogenationg reagents

b. Typical activation models of NXS (X = Cl, Br, I)

2. Type I : Bronsted Acid

N-Halosuccinimide/BF₃-H₂O, Efficient Electrophilic Halogenating Systems for Aromatics

G. K. Surya Prakash (1953–)

(a) Uncatalyzed Reaction

Reaction mechanism

(b) Acid catalyzed reaction; nte the charge-charge repulsionrelief in the transition state and in the products

3. Type II : Lewis Acid

Iron(III)-Catalyzed Chlorination of Activated Arenes

Sutherland, A.* *et al. J. Org. Chem.* **2017**, 7529 Sutherland, A.* *et al. Org. Lett.* **2015**, 4782

up to 97% yield 26 examples

Sutherland, A

Reaction Mechanism

[BMIM]NTf₂

- a. N-centered
 - 1) Highly *ortho-*Selective Chlorination of Anilines Using a Secondary Ammonium Salt Organocatalyst Yeung, Y.-Y.* *et al. Angew. Chem. Int. Ed.* **2016**, 16101
 - 2) Ammonium Salt-Catalyzed Highly Practical *Ortho*-Selective Monohalogenation and Phenylselenation of Phenols: Scope and Applications

Yeung, Y.-Y.* et al. ACS Catal. 2018, 4033

K.ISHIHARA GROUP green catalysis

A. Previous lewis base catalysts in halogenation

b. S-centered

Thiourea–I₂ as Lewis Base–Lewis Acid Cooperative Catalysts for Iodochlorination of Alkene with In Situ-Generated I–CI Horibe, T.; Tsuji, Y.; Ishihara, K. *ACS Catal.* **2018**, 6362

c. Se-centered

*C*₂-Symmetric Cyclic Selenium-Catalyzed Enantioselective Bromoaminocyclization Yeung, Y.-Y.* *et al. J. Am. Chem. Soc.* **2013**, 1232

A. Previous lewis base catalysts in halogenation

d. P-centered

Enantioselective halocyclization of polyprenoids induced by nucleophilic phosphoramidites Sakakura, A.; Ukai, A.; Ishihara, K. *Nature*, **2007**, 900

5. Type IV : Halogen Bond

Halogen Bond Catalyzed Bromocarbocyclization

Yeung, Y.-Y.* et al. Angew. Chem. Int. Ed. 2018, 3483

X = NTs, O

2c

up to 99% yield d.r. >99:1

Yeung, Y.-Y.* (1980–)

Entry	Catalyst	Yield (%)
9	2 a	trace
10	2 b	20
11	2c	10
12	Ph ₃ P=S	trace
13	<i>i</i> Pr ₂ NEt	trace
14	DMAP	trace
15	CF ₃ CO ₂ H	18
16	3 (BINAP phosphoric acid)	12
17	TMSOTF	13

6. Features of Each Type

	Feature	Function
Type I Bronsted Acid	 Indirect activation →require FGs to interact with X⁺ reagents Established synthetic method (especially chiral phosphoric acid) 	 As an activator
Type II Lewis Acid	 Indirect activation →require FGs to interact with X⁺ reagents Wide range of design (metal counter-anion etc.) 	 As an activator
Type III Lewis Base	 Direct interaction of X⁺ moiety Easy to change hetero atoms (optimization of catalyst) Lots of literature 	 As both an activator and a stabilizer
Type IV Halogen Bond	 Indirect or direct activation of X⁺ reagents Directional interaction A little literatue 	 As both an activator and a stabilizer

7-1. Desymmetrization/Kinetic Resolution Sequence

Type I : Bronsted Acid

Enantioselective Synthesis of Multisubstituted Biaryl Skeleton by Chiral Phosphoric Acid Catalyzed Desymmetrization/Kinetic Resolution Sequence

Akiyama, T. et al. J. Am. Chem. Soc. 2013, 3964

Ð

K.ISHIHARA GROUP green catalysis

Akiyama, T. (1958-)

Chiral phosphoric acid catalyst

7-2. Desymmetrization/Kinetic Resolution Sequence

Substrate Design

i) hydrogen bond network among substrate, catalyst, and brominating reagent

 intramolecular hydrogen bond for high reactivity and structural rigidity

Control Experiments

a) Examination of the substituent effect on selectivity

Reaction conditions: 1 (10 mol %), NBP (1.0 equiv), CH_2Cl_2 /toluene (v/v=1/1), MS13X, -20 °C, 0.5 h

b) masking the hydroxy group

a) C6'-alkoxy group played a crucial role in the enantioselectivity

b) Important role of OH in both reactivity and enantioselectivity

7-3. Desymmetrization/Kinetic Resolution Sequence

Transition State Model by Gaussian

*R-*product

7-4. Desymmetrization/Kinetic Resolution Sequence

Major factor affecting the relative energies \rightarrow the steric interaction (OMe vs. CH₂-OMe)

8-1. Chiral Sulfide-Catalyzed Enantioselective Chlorination

Type III : Lewis Base

Zhao, X.* et al. Angew. Chem. Int. Ed. 2019, 1315

	Optimization							
Ph NHBz	f 1a	⊃h + "Cl⁺ reagen ⊃h	t" ——— CH ₂ Cl	cat. acid _{2,} -78 ^o C, 1	2 h Př	P Za	h ,Cl NHBz	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
\bigcirc	_	Se C1, R = OMe	Me OMe		∘s≜	1 C3, R C4, R	= Me = OMe	
	NH	Tf		NH	Tf			
Entry	NH Cat.	Cl ⁺ reagent	Acid	NH Yield [Tf %] ^[b]	ee [%] ^[c]	d.r. ^[d]	
Entry 1	NH ⁻ Cat. C1	Cl ⁺ reagent NCS	Acid –	NH Yield [Tf %] ^[b] <5	ee [%] ^[c]	d.r. ^[d]	
Entry 1 2	Cat. C1 C1	Cl ⁺ reagent NCS NCS	Acid – TFA	NH Yield [Tf %] ^[b] <5 <5	ee [%] ^[c] 	d.r. ^[d]	
Entry 1 2 3	NH ¹ Cat. C1 C1 C2	Cl ⁺ reagent NCS NCS NCS	Acid – TFA TFA	NH Yield [Tf %] ^[b] <5 <5 <5	ee [%] ^[d] 	d.r. ^[d] _ _	
Entry 1 2 3 4	NH ¹ Cat. C1 C1 C2 C3	Cl ⁺ reagent NCS NCS NCS NCS NCS	Acid – TFA TFA TFA	Yield [Tf %] ^[b] <5 <5 <5 39	ee [%] ^[c] - - 53	d.r. ^[d] – – 8:1	
Entry 1 2 3 4 5	NH ^T Cat. C1 C1 C2 C3 C4	Cl ⁺ reagent NCS NCS NCS NCS NCS NCS NCS	Acid – TFA TFA TFA TFA	Yield [7 (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	<i>ee</i> [%] ^[c] - - 53 57	d.r. ^[d] – – 8:1 7:1	
Entry 1 2 3 4 5 6	NH1 Cat. C1 C1 C2 C3 C4 C4	Cl ⁺ reagent NCS NCS NCS NCS NCS NCS (PhSO ₂) ₂ N-Cl	Acid TFA TFA TFA TFA TFA TFA	Yield [Tf %] ^[b] < 5	<i>ee</i> [%] ^[c] - - 53 57 21	d.r. ^[d] – – 8:1 7:1 2:1	
Entry 1 2 3 4 5 6 7	NH ¹ Cat. C1 C1 C2 C3 C4 C4 C4 C4	Cl ⁺ reagent NCS NCS NCS NCS NCS (PhSO ₂) ₂ N-Cl Saccharin-Cl	Acid – TFA TFA TFA TFA TFA TFA	Yield [Tf %] ^[b] < 5 < 5 < 5 39 45 63 35 10	<i>ee</i> [%] ^[c] - - 53 57 21 21	d.r. ^[d] - 8:1 7:1 2:1 2:1	
Entry 1 2 3 4 5 6 7 8	Cat. C1 C1 C2 C3 C4 C4 C4 C4 C4	Cl ⁺ reagent NCS NCS NCS NCS NCS (PhSO ₂) ₂ N-Cl Saccharin-Cl DCDMH	Acid – TFA TFA TFA TFA TFA TFA TFA TFA	Yield [Tf %] ^[b] < 5	<i>ee</i> [%] ^[c] - - 53 57 21 21 73	d.r. ^[d] - 8:1 7:1 2:1 2:1 10:1	
Entry 1 2 3 4 5 6 7 8 9	Cat. C1 C1 C2 C3 C4 C4 C4 C4 C4 C4	Tf Cl ⁺ reagent NCS NCS NCS NCS (PhSO ₂) ₂ N-Cl Saccharin-Cl DCDMH Chloramine-T	Acid — TFA TFA TFA TFA TFA TFA TFA TFA	Yield [7 7	ee [%] ^[c] - - 53 57 21 21 73 - 73	d.r. ^[d] - - 8:1 7:1 2:1 10:1 10:1	
Entry 1 2 3 4 5 6 7 8 9 10	NH1 Cat. C1 C2 C3 C4 C4 C4 C4 C4 C4 C4	Tf Cl ⁺ reagent NCS NCS NCS NCS (PhSO ₂) ₂ N-Cl Saccharin-Cl DCDMH Chloramine-T DCDMH	Acid - TFA TFA TFA TFA TFA TFA TFA TFA	Yield [[f] <5 <5 <5 45 63 35 40 <5 35 22	ee [%] ^[c] - - 53 57 21 21 73 - -60 -25	d.r. ^[d] - - 8:1 7:1 2:1 10:1 10:1 - 2:1	
Entry 1 2 3 4 5 6 7 8 9 10 11 12	Cat. C1 C1 C2 C3 C4 C4 C4 C4 C4 C4 C4 C4 C4	If Cl ⁺ reagent NCS NCS NCS NCS (PhSO ₂) ₂ N-Cl Saccharin-Cl DCDMH Chloramine-T DCDMH DCDMH	Acid - TFA TFA TFA TFA TFA TFA TFA TFA	Yield [If <5	ee [%] ^[c] - - 53 57 21 21 73 - - 60 -25	d.r. ^[d] - - 8:1 7:1 2:1 2:1 10:1 - 2:1 3:1	
Entry 1 2 3 4 5 6 7 8 9 10 11 12 13 ^[e]	Cat. C1 C1 C2 C3 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4	If Cl ⁺ reagent NCS NCS NCS NCS (PhSO ₂) ₂ N-Cl Saccharin-Cl DCDMH Chloramine-T DCDMH DCDMH DCDMH	Acid - TFA TFA TFA TFA TFA TFA TFA TFA	Yield [If <5	ee [%] ^[c] - - 53 57 21 21 73 - - 60 -25 66 74	d.r. ^[d] - - 8:1 7:1 2:1 2:1 10:1 - 2:1 3:1 8:1 7:1	
Entry 1 2 3 4 5 6 7 8 9 10 11 12 13 ^[e] 14 ^[e,f]	NHT Cat. C1 C2 C3 C4 C4	Cl ⁺ reagent NCS NCS NCS NCS NCS (PhSO ₂) ₂ N-Cl Saccharin-Cl DCDMH Chloramine-T DCDMH DCDMH DCDMH DCDMH (1 eq.	Acid - TFA TFA TFA TFA TFA TFA TFA TFA	Yield [If <5	<i>ee</i> [%] ^[c] - - - - - - - - - - - - -	d.r. ^[d] 8:1 7:1 2:1 10:1 - 2:1 3:1 8:1 7:1 3:1 1	

[a] Reaction conditions: 1 a (0.05 mmol), Cl⁺ reagent (1.5 equiv), acid (2.0 equiv), catalyst (10 mol%), CH₂Cl₂ (2.0 mL), -78 °C, 12 h. [b] Yield determined by NMR spectroscopy using benzyl benzoate as the internal standard. [c] Determined by chiral HPLC analysis. [d] Determined by NMR spectroscopy. [e] DCDMH (1.0 equiv). [f] Tf₂NH (0.5 equiv).

8-2. Chiral Sulfide-Catalyzed Enantioselective Chlorination

c) Acid-derived anion bridge through hydrogen-bond

 \mathbb{Q}

- accelating the attack of the phenyl group

a) Tf : Strong hydrogen-bond donor

b) NHBz : Hydrogen-bond interaction is essential

- stereoselectivity

9-1. Background : Chlorination of (hetero)arenes

Nagib, D. A. et al. Chem 2019, 417

9-2. Background : Chlorination of (hetero)arenes

Computationally Experiments

Actual reaction point

9-3. Background : Chlorination of (hetero)arenes

Demerits of these method -Expensive chlorinating reagents -Harsh conditions - A lack of a simple, selective and practical catalytic protocol for late-stage chlorination

10-1. DMSO-catalysed late-stage chlorination of (hetero)arenes

Type III : Lewis Base

DMSO-catalysed late-stage chlorination of (hetero)arenes

Song S. et al. Nat. Catal. 2020, 107

- up to 99% yield
- 51 examples
- including 9 drugs, 30 (hetero)arenes, 6 natural products, 5 peptides

- Simple DMSO as catalyst
- Efficient, pratical, scalable and low cost
- Late stage chlorination of bioactive molecules

- Readily available NCS reagents
- Broad heteroarene scopes
- Direct chlorination of tyrosine residue

10-2. DMSO-catalysed late-stage chlorination of (hetero)arenes

Optimization

Cat. (20 mol%) [Cl] (1.2 equiv) CHCl ₃ , 25 °C, 20 h OMe								
			xanthoto	oxin		CI-xanthotoxin		
				21		MeO ₂ C, N, CO ₂ Me		
			NCS		DCDMH	Palau'chlor		
Entry	[CI]	Cat.		Yield	Entry	[CI]	Cat.	Yield
1	NCS	-		3%	8	DCDMH	Ph₃P=S	62%
2	NCS	-	(70 °C)	11%ª	9	DCDMH	DMSO	90%
3	NCS	DMSO		90%	10	Palau'chlor	-	48%
4	NCS	Py N-oxide		trace	11	Palau'chlor	Ph ₃ P=S	55%
5	NCS	PhNO₂		trace	12	Palau'chlor	DMSO	91%
6	NCS	Ph ₃ P=S		40%	13	NCS	DMSO as solvent	trace
7	DCDMH	-		45%	14	HCI ^ь	DMSO as solvent	trace

Reactions were conducted in 0.25 M CHCl₃ at 25 °C for 20 h at the 0.25 mmol scale catalysed by 20 mol% catalyst. Isolated yields. *At 70 °C for 48 h. *Aqueous HCl (2 equiv., 37%) was employed.

Scope

Cl-Clotrimazole (drug) 49% yield

Cl-Deoxtgen-δ-tocopherol (natural product) 92% yield

CI-Bz-Tyr-OMe (natural product) 86% yield

Cl-Boc-Leu-Val-Phe-Tyr-OMe (peptide) 75% yield

10-3. DMSO-catalysed late-stage chlorination of (hetero)arenes

c. The dependence of reaction rate on [DMSO cat.]

Entry	DMSO	Yield of CI-2	NL value in HRMS	Relative concertration of DMSO·CI ⁺ in HRMS
1	0	Trace		
2	0.2 equiv.	97%		
3	0.5 equiv.	96%		
4	1 equiv.	94%	5.05×10^{6}	1
5	2.0 equiv.	76%	1.32 ×10 ⁶	0.26
6	5.0 equiv.	35%	2.12×10^{5}	0.042
7	10.0 equiv	17%	6.02×10^{4}	0.012
8	50.0 equiv	Trace	2.49×10^3	49×10^{-4}

d. Reaction rate vs. [DMSO]

10-4. DMSO-catalysed late-stage chlorination of (hetero)arenes

11-1. Selective Halogenation of Olefins, Alkynes, Aromatics

Type II : Lewis Acid

Oxoammonium salts are catalysing efficient and selective halogenation of olefins, alkynes and aromatics

Song S. et al. Nat. Commun. 2021, 3873

11-2. Selective Halogenation of Olefins, Alkynes, Aromatics

Entry	X	catalyst	Yield	Entry	Х	catalyst	Yield
1	CI	-	trace	16	CI	Quinoline N-oxide	38%
2	CI	2,4,6-(Me) ₃ PhNH ₂	44%	17	CI	TEMPO	64%
3	CI	Ph ₃ P=S	38%	18	CI	4-OH-TEMPO	61%
4	CI	(Me ₂ N) ₂ C=S	33%	19	CI	4-BzO-TEMPO	55%
5	CI	Ph ₂ S	35%	20	CI	4-Oxo-TEMPO	63%
6	CI	Ph ₂ Se	29%	21	CI	4-NHAc-TEMPO	70%
7	CI	nBu ₃ P	48%	22	CI	4-NH ₂ -TEMPO	75% (74%) ^b
8	CI	TMSOTf	trace	23	CI	ABNO	57%
9	CI	TfOH	trace	24	CI	Keto-CHAMPO	40%
10	CI	DMSO	35%	25	Br	4-Oxo-TEMPO	92% (88%) ^b
11	CI	Ph ₂ S=O	47%	26	Br	4-NH ₂ -TEMPO	72%
12	CI	Bn ₂ S=O	40%	27	Br	ABNO	78%
13	CI	MeNO ₂	10%	28	Br	Keto-CHAMPO	60%
14	CI	Py N-oxide	42%	29	I.	4-Oxo-TEMPO	62% (60%) ^b
15	CI	4-NO ₂ Py N-oxide	37%	30	1	4-NH ₂ -TEMPO	43%

Ph

10 mol% TEMPO : 68% yield 2 mol% [TEMPO][OTf] : 88% yield

Ph

Ts

HRMS : 156.1387

[TEMPO][OTf]

Ò.

[TEMPO•NCS]+ HRMS: 289.1317

	CI	MeNO ₂	10%	28
	CI	Py N-oxide	42%	29
	CI	4-NO ₂ Py N-oxide	37%	30
			-	
			S	cope
	Ph		Br	0
~		CI	Ξ	Ū

from alkene 65% yield d.r. >25:1

from alkene 89% yield d.r. >25:1

w/ [TEMPO][OTf] 62% yield (DMSO cat. : trace)

11-3. Selective Halogenation of Olefins, Alkynes, Aromatics

b а In(OTf)₃/DBDMH = 5:1 [TEMPO][OTf]/DBDMH = 5:1 In(OTf)₃/DBDMH = 3:1 [TEMPO][OTf]/DBDMH = 3:1 $ln(OTf)_3/DBDMH = 2:1$ [TEMPO][OTf]/DBDMH = 2:1 In(OTf)₃/DBDMH = 1:1 [TEMPO][OTf]/DBDMH = 1:1 $ln(OTf)_3/DBDMH = 0.5:1$ [TEMPO][OTfl/DBDMH = 0.5:1 $ln(OTf)_3/DBDMH = 0:1$ [TEMPO][OTf]/DBDMH = 0:1 154.30 154.0 154.5 154.4 154.0 154.0 154.1 154.0 153.9 153.8 154.20 154.10 154.00 153.00 153.00 1.04 1 102.0 10.4 153.70 d С 0.000050 0.000045 0.00008 0.000040 O - 0.000035 - (W/s) 0.000030 -–Br a Br Initial 0.000025

0.010

0.005

0.015

[TEMPO][OTf]/M

0.000020

0.000015 0.000010

DBDMH

Mechanistic studies

- TEMPO⁺ functioned as a potential Lewis acid

0.020

- [TEMPO][OTf] was involved in the activation of DBDMH

11-4. Selective Halogenation of Olefins, Alkynes, Aromatics

